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This document describes the semantics of the data used to describe the model for the
three-point third-order velocity correlation in high Reynolds number isotropic turbulence
reported in the Physics of Fluids paper entitled “An inertial range model for the three-point
third-order velocity correlation,” by Chang & Moser (2007, referred to as CM from here
on). Also described is a set of Fortran 90 subroutines that read the data and evaluate the
correlation tensor for given separation vectors.

As described in CM, the three-point third-order correlationtensorTijk(r, s) in homoge-
neous turbulence is defined

Tijk(r, s) = 〈vi(x)vj(x + r)vk(x + s)〉 (1)

wherevi is the velocity. The third separation vectort = r − s is also needed. The magni-
tudes of the separations vectors are denotedr, s andt respectively. The inertial range model
for this correlation is written in terms of 5 basis vectorsT

n. Each of the basis tensors is
written in terms of 14 tensor functionsΓm of r ands as follows:
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Each basis tensor in the model is then given by
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where thefn,m are rational functions. Kolmogorov inertial range theory and dimensional
analysis implies thatT scales linearly with the dissipationǫ and a length scale related to
the separations, and we choose the maximum ofr, s andt to be that length scale. Using
the symmetries ofT (see CM), we can always rearrange arguments so that (for example)
s ≤ r ≤ t. Thus in what follows, without loss of generality, we can assume thatt is the
largest separation, so thatt is the scaling length. Definẽr = r/t, s̃ = s/t, r̃ = r/t and
s̃ = s/t and letf̃n,m(r̃, s̃) = fn,m(r̃, s̃, 1). The rational functions̃f can be expressed:
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whereNn is an integer that normalizes the basis function to be consistent withǫ = 1, Mn,m

is the number of rational terms iñfn,m, cn,m

l are the integer coefficients for each term,pn,m

l

are the integer powers ofr, which can be negative,qn,m

l are the integer powers ofs, which
can be negative. Thus, our final expression for thenth basis function is:
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and the five basis functions are defined by specifying the integersNn, Mn,m, cn,m

l , pn,m

l ,
qn,m

l .

Using the procedure described in CM, these numbers defining the basis tensors were de-
termined and are provided in the accompanying data filebasisdata.txt, which can
be read to allow evaluation of the tensor model using the Fortran 90 routines provided in
evalTijk.f90. These routines ignore text (comments) on each line that follows an “!”,
which are provided inbasisdata.txt to make the file more human readable. The data
in the file is written with the following structure:

foreach n = 1 to 5
Nn

foreach m = 1 to 14
Mn,m

cn,m

l for l = 1 to Mn,m

pn,m

l for l = 1 to Mn,m

qn,m

l for l = 1 to Mn,m

end foreach m
end foreach n

where each line in the outline above that does not start withforeach or end foreach
represents a line in the data file, while theforeach — end foreach pairs indicate
structure that is repeated for the different values of the indicated variable. Thefor struc-
ture indicates quantities that are looped through on the same line.

In the Fortran 90 moduleevalTijk.f90, five user callable subroutines and functions
are provided. They are as follows:

• read basis(datafile) Reads the data describing the 5 basis tensors in the
format described above.datafile is a string containing the name of the data file
to read. The representation is stored in an internal data structure for later use in
evaluating the correlations.

• print basis Prints the basis characterization data tostdout in the format de-
scribed above, though without comments. This is a debuggingdiagnostic.

• build composite(weights,normalize) Constructs a representation for a
linear combination of the 5 basis tensors specified by the weights stored in the double
precision real array of 5 coefficientsweights. The result is stored in an internal data
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structure for later use in evaluation. The parameternormalize is a logical, which
if true, will cause the weights to be normalized so that they sum to one, resulting in
a correlation consistent withǫ = 1. If not normalized, the dissipation related to the
correlation is the sum of the coefficients inweights. If an individual basis function
is to be evaluated thenweights should include all zeros, except for a one for the
basis tensor to be evaluated.

• print composite Similar toprint basis, prints the characterization of the
composite in a format like that described above. The differences are that there is
no loop inn and the valuescn,m

l are reals rather than integers. This is primarily a
debugging diagnostic.

• eval composite(i,j,k,r ,s ,checkprecision) is a function returning
the value ofTijk(r, s) for the composite tensor defined bybuild composite.
i, j, k are integers, whiler ands are three-dimensional double precision real
vectors representingr ands. The argumentcheckprecision is a logical. If true,
eval composite will return aNaN if the magnitude of the smallest separation
vector is more than a factor of 100 smaller than the largest separation vector. This is
useful because for such large aspect ratios, the evaluationof the model is subject to
pollution by round-off errors. When this aspect ratio is lessthan 100, the round-off
error will be less than a part in105.

To use the routines to evaluateTijk(r, s), one would normally first callread basis point-
ing it atbasisdata.txt. Then one would callbuild composite with coefficients
determined from a fit of the correlations to appropriate data. For example, from CM, we
would have:

double precision :: weights(5)
weights = (/0.884,-2.692,-6.099,-5.853,14.760/)

An example programeval 2pt 3or tophat.f90 is used to compute the two-point
third-order correlations of top-hat filtered (integrated over cubical volume) velocities, with
separation in the direction normal to the cubical faces.

These routines are intended primarily as an example of how touse the description of the
correlation model, and as a means of comparison. However, there are a number of ways in
which these routines could be improved, in general, or for particular purposes. Two obvious
examples are: 1) avoid the problem of large aspect ratio separations by using in this case an
asymptotic representation valid when one separation is very small; 2) improve efficiency
when computing all components of the tensor, by not recomputing the rational functions
f̃ for each component. There are likely many other improvements. If you develop an im-
provement that might be of general interest, please forwardit on to us. We will maintain an
updated versions of the codes and data athttp://turbulence.ices.utexas.edu/Tijk.html.
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