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This document describes the semantics of the data used toileshe model for the
three-point third-order velocity correlation in high Reya®number isotropic turbulence
reported in the Physics of Fluids paper entitled “An inéri@age model for the three-point
third-order velocity correlation,” by Chang & Moser (200&ferred to as CM from here
on). Also described is a set of Fortran 90 subroutines that the data and evaluate the
correlation tensor for given separation vectors.

As described in CM, the three-point third-order correlatiensorT;;;(r,s) in homoge-
neous turbulence is defined

Tijr(r,s) = (vi(x)vj(x + r)vg(x + 8)) (1)

wherev; is the velocity. The third separation vector r — s is also needed. The magni-
tudes of the separations vectors are denptec@ndt respectively. The inertial range model
for this correlation is written in terms of 5 basis vectdirs Each of the basis tensors is
written in terms of 14 tensor function¥™ of r ands as follows:
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Each basis tensor in the model is then given by
z]k: anm T, s, t z]k (2)

where thef™™ are rational functions. Kolmogorov inertial range theongl aimensional
analysis implies thaf scales linearly with the dissipatianand a length scale related to
the separations, and we choose the maximum, efand¢ to be that length scale. Using
the symmetries off (see CM), we can always rearrange arguments so that (for égamp
s < r < t. Thus in what follows, without loss of generality, we canuass thatt is the
largest separation, so thats the scaling length. Define = r/t, s = s/t, 7 = r/t and

§ = s/t and letf™™ (7, 5) = f™™(7,3,1). The rational functiong can be expressed:
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whereN™ is an integer that normalizes the basis function to be ctargigithe = 1, M™™
is the number of rational terms if-™, ¢/ are the integer coefficients for each tepfr"
are the integer powers of which can be negative,”™ are the integer powers of which
can be negative. Thus, our final expression forntiebasis function is:
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and the five basis functions are defined by specifying thegexsev", M™™, ¢, p;™

q°

Using the procedure described in CM, these numbers definenpdbis tensors were de-
termined and are provided in the accompanying databfiei sdat a. t xt , which can

be read to allow evaluation of the tensor model using ther&or@0 routines provided in
eval Ti j k. f 90. These routines ignore text (comments) on each line thia¥slan “!”,
which are provided ifbasi sdat a. t xt to make the file more human readable. The data
in the file is written with the following structure:

foreach n=11to 5
Nn
foreach m=1 to 14
Mn,m
g™ for I=1to M™™
p/™ for I=1to M™™
g™ for I=1to M™™
end foreach m
end foreach n

where each line in the outline above that does not startfnwtheach orend f or each
represents a line in the data file, while ther each — end f or each pairs indicate
structure that is repeated for the different values of tlkcated variable. Théor struc-
ture indicates quantities that are looped through on thesera.

In the Fortran 90 moduleval Ti j k. f 90, five user callable subroutines and functions
are provided. They are as follows:

e read basi s(dat afil e) Reads the data describing the 5 basis tensors in the
format described abovelat af i | e is a string containing the name of the data file
to read. The representation is stored in an internal datetste for later use in
evaluating the correlations.

e print _basi s Prints the basis characterization datastadout in the format de-
scribed above, though without comments. This is a debugdjamnostic.

e bui I d_conposi te(wei ghts, nornmal i ze) Constructs a representation for a
linear combination of the 5 basis tensors specified by thghteistored in the double
precision real array of 5 coefficient®i ght s. The resultis stored in an internal data
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structure for later use in evaluation. The paramatarnal i ze is a logical, which

if true, will cause the weights to be normalized so that thay $0 one, resulting in

a correlation consistent with= 1. If not normalized, the dissipation related to the
correlation is the sum of the coefficientsiei ght s. If an individual basis function

is to be evaluated themei ght s should include all zeros, except for a one for the
basis tensor to be evaluated.

e print _conposite Similar topri nt _basi s, prints the characterization of the
composite in a format like that described above. The diffees are that there is
no loop inn and the values;"™ are reals rather than integers. This is primarily a
debugging diagnostic.

e eval conposite(i,j,k,r_ s_, checkprecision) isa function returning
the value ofT;;(r,s) for the composite tensor defined byi | d_conposi te.
i, j, kareintegers, while _ands_ are three-dimensional double precision real
vectors representingands. The argumentheckpr eci si on is a logical. If true,
eval _conposi t e will return aNaN if the magnitude of the smallest separation
vector is more than a factor of 100 smaller than the larggstrsg¢ion vector. This is
useful because for such large aspect ratios, the evaluattibre model is subject to
pollution by round-off errors. When this aspect ratio is léemn 100, the round-off
error will be less than a part it0)°.

To use the routines to evaludlg(r, s), one would normally first call ead_basi s point-
ing it atbasi sdat a. t xt . Then one would cabui | d_conposi t e with coefficients
determined from a fit of the correlations to appropriate d&@r example, from CM, we
would have:

doubl e precision :: weights(5)
wei ghts = (/0.884,-2.692,-6.099, -5. 853, 14. 760/)

An example prograneval 2pt _3or _t ophat . f 90 is used to compute the two-point
third-order correlations of top-hat filtered (integrate@iocubical volume) velocities, with
separation in the direction normal to the cubical faces.

These routines are intended primarily as an example of hawgéathe description of the

correlation model, and as a means of comparison. Howeere Hre a number of ways in

which these routines could be improved, in general, or fai@aar purposes. Two obvious

examples are: 1) avoid the problem of large aspect ratiaratpas by using in this case an
asymptotic representation valid when one separation is small; 2) improve efficiency

when computing all components of the tensor, by not recomg@uhe rational functions

f for each component. There are likely many other improvemdiityou develop an im-

provement that might be of general interest, please fornwwanto us. We will maintain an

updated versions of the codes and datatatp: / / t ur bul ence. i ces. ut exas. edu/ Ti j k. ht i .



