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Abstract

It is noted that in large eddy simulation, filtering of the three-point third-order velocity correla-

tion allows one to determine the two-point third-order correlation of the filtered velocity. This is

useful in analyzing the dynamics of filtered (LES) fields, since the two-point third-order correlation

describes energy flux from large to small scales, just as it does in unfiltered turbulence. A model

for the three-point third-order correlation for stationary, incompressible, homogeneous, isotropic

turbulence in the inertial range is proposed in which simple polynomials are used as the scalar

function appearing in the most general tensorial form for the correlation. This leads to a model

with four free parameters, which are set by appealing to statistical data from a DNS. The resulting

three-point third-order correlation function is in very good agreement with the data.
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I. INTRODUCTION

Multi-point velocity correlations are central to the statistical description of homoge-

neous isotropic turbulence[1, 2]. The two-point second-order velocity correlation Rij(r) =

〈vi(x)vj(x + r)〉, and its Fourier transform, the spectrum tensor, are among the most

commonly considered correlations, and a variety of models for their evolution have been

developed[3–6]. There have also been a number of theoretical and experimental efforts to

analyze two-point correlations and structure functions [7, 8], including in the context of

large eddy simulation modeling [9].

In homogeneous turbulence, the evolution equation for R contains the two-point third-

order correlation Sijk(r) = 〈vi(x)vj(x)vk(x + r)〉 as a result of the non-linear terms in the

Navier-Stokes equations. S describes the transfer of energy from large-scales to small, and as

such is of critical importance to the theory of the two-point statistics of turbulence. Assum-

ing isotropy, the evolution equation for R reduces to the Karman-Howarth equation.[10] In

combination with the assumption of a Kolmogorov inertial range, this leads to the well-

known Kolmogorov 4/5 law[11] for the third-order longitudinal structure function in the

inertial range. This is an exact consequence of scale separation between large and dissipa-

tive scales and the scale independence of the energy flux in the intermediate range between

them for homogeneous, isotropic, incompressible turbulence. Isotropy of the turbulence also

implies that S can be uniquely determined in terms of the third-order structure function,

just as R can be written in terms of the second-order structure function.

Of course, the two-point third-order correlation Sijk(r) is a restricted case of the three-

point third-order correlation Tijk(r, s) = 〈vi(x)vj(x + r)vk(x + s)〉. But there is no direct

association of T with the evolution equation for R or with energy transfer. There has thus

been little motivation to study T, and because of the complexity of this quantity, there has

been virtually no work to characterize it.

In Large Eddy Simulation (LES), however, there is a motivation to characterize T. To see

why this is true, let ṽi(x) be the LES filtered velocity field. Note that the evolution equation

for the two-point correlation of an LES field R̃ij(r) = 〈ṽi(x)ṽj(x + r)〉 includes a term

involving the two-point third-order correlation of the LES field S̃ijk(r) = 〈ṽi(x)ṽj(x)ṽk(x +

r)〉, that arises from the quadratic terms in the LES equations. S̃ represents energy transfer

among scales in the LES due to the nonlinear term and is thus of importance to analyzing
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the dynamics of the LES equations. It is also one of the statistical inputs to the optimal

LES modeling approach described in references [12–14]. S̃ can be determined by applying

the filter (three times) to T (see section II A), which is the reason for our interest in the

three-point correlation.

The notable exception to the lack of work on the three-point third-order correlation is the

paper by Proudman & Reid[15], in which the most general incompressible, isotropic form of

the Fourier transform of T is derived. In this paper, we start with some mathematical back-

ground (section II). Then from Proudman & Reid’s result for the Fourier transform of the

correlation, the equivalent form for the physical-space correlation is determined and we find

the simplest expression consistent with the Kolmogorov 4/5 law (section III). Conclusions

and implications are discussed in section IV.

II. BACKGROUND

The Kolmogorov inertial range theory for high Reynolds number turbulence yields expres-

sions for the longitudinal structure functions, under the well known similarity assumptions

that in the inertial range, the statistical properties of turbulence depend on the separation

scale and the rate of dissipation[1, 16]. The longitudinal structure functions are:

Sp(r) = 〈(u‖(x + r) − u‖(x))p〉 = Cp(ǫr)
p/3 (1)

where r = |r| is the magnitude of the separation vector r, which is assumed to be in the

inertial range, u‖ is the velocity component in the separation direction, ǫ is the average

rate of kinetic energy dissipation (per unit mass) and Cp are the Kolmogorov constants,

which are generally determined empirically (e.g. C2 ≈ 2.0). The Kolmogorov expressions

for the structure functions are found to be relatively good representations for p = 2 and 3,

though corrections are available for p = 2[17, 18]. However, their accuracy degrades as p

increases[19]. Remarkably, an exact consequences of the theory and the evolution equation

for the two-point correlation, in which the third-order two-point correlation appears, is that

C3 = −4/5, the so-called Kolmogorov 4/5 law.

Isotropy and the continuity constraints are sufficient to determine the second- and third-

order two-point correlation tensors from the second and third-order structure functions
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respectively. Using the Kolmogorov expressions above, the correlation tensors are:

Rij(r) = u2δij +
C2

6
(ǫr)2/3

(rirj

r2
− 4δij

)
(2)

Sijk(r) =
ǫ

15

(
δijrk −

3

2
(δikrj + δjkri)

)
(3)

where the two-point correlations are defined:

Rij(r) = 〈vi(x)vj(x + r)〉 (4)

Sijk(r) = 〈vi(x)vj(x)vk(x + r)〉, (5)

and u2 is 2/3 the turbulent kinetic energy, which is also the velocity variance. The result for

the second-order correlation is well known, but we are not aware of a previous reporting of

the third-order two-point correlation as shown here, though it is implicit to the derivation

of the 4/5 law, and is alluded to by Frisch [1]. For completeness, an outline of the derivation

is given in Appendix A.

The three-point third-order velocity correlation, which is the quantity of interest here is

defined:

Tijk(r, s) = 〈vi(x)vj(x + r)vk(x + s)〉 (6)

The three points form a triangle, and vectors r and s determine it’s size, shape, and ori-

entation. Because it is a function of two vector arguments, T is much more complex than

the two-point correlation S. However, we seek the analog of (3) for the three-point correla-

tion. That is a “simple” tensor form consistent with known constraints and the Kolmogorov

theory, particularly the 4/5 law.

A. Relationship to LES

In the usual formulation of Large Eddy Simulation (LES) the filtered velocity is defined:

ṽi(x) =

∫
G(x − x′)vi(x

′)dx′ (7)

where G(x) is the homogeneous filter kernel. The Navier-Stokes equations are then filtered

to arrive at an evolution equation for ṽ:

∂ṽi

∂t
+
∂ṽiṽj

∂xj

= −1

ρ

∂P̃

∂xi

+ ν
∂2ṽi

∂xj∂xj

+
∂τij
∂xj

(8)
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where

τij = ṽiṽj − ṽivj (9)

is the subgrid stress.

In homogeneous, isotropic, incompressible turbulence, the two-point correlation of the

filtered velocity R̃ij(r) = 〈ṽi(x)ṽj(x + r)〉 evolves according to

∂R̃ik

∂t
= 2ν

∂2R̃ik

∂rj∂rj

+
∂S̃ijk

∂rj

+
∂S̃kji

∂rj

− ∂Qijk

∂rj

− ∂Qkji

∂rj

(10)

where

S̃ijk(r) = 〈ṽi(x)ṽj(x)ṽk(x + r)〉, (11)

Qijk(r) = 〈τij(x)ṽk(x + r)〉. (12)

The energy transfer between scales of the filtered velocity is mediated by S̃. We can

contract (10) to obtain the evolution equation for 1
2
R̃ii, which only depends on the magnitude

of r, and can be interpreted as the energy in the filtered field associated with scales larger

than r. Then −∂S̃iji/∂rj(r) appears as the net flux of energy from scales larger than r in

the filtered field to those smaller than r. This is analogous to the physical-space energy

flux −∂Siji/∂rj in the unfiltered equation [1], which is just ǫ in the inertial range. Similarly

∂Qiji/∂rj is interpreted as the net flux of energy from scales of the filtered fields larger than

r to the sub-filter fluctuations (v − ṽ). These average fluxes are generally positive (from

large to small scales); but, this is an average of fluxes in both directions.

Because S̃ includes the product of filtered velocities, it cannot be determined by directly

filtering S. It can, however be found by filtering T:

S̃ijk(r) =

∫ ∫ ∫
G(s)G(s − r′)G(s + r − s′)Tijk(r

′, s′) ds dr′ ds′ (13)

which can be derived easily by applying the filter (7) separately to each of the velocities in

the definition of T.

The two-point correlation equation (10) also includes Q arising from the sub-filter stress

term in the LES equations. The definition of τij (9) means that Q can be expressed

Qijk(r) = S̃ijk(r) − Ŝijk(r) (14)
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where Ŝijk(r) = 〈ṽivj(x)ṽk(x + r)〉 can be determined by filtering the two-point third-order

correlation of the unfiltered velocity

Ŝijk(r) =

∫ ∫
G(s)G(s + r − r′)Sijk(r

′) ds dr′. (15)

Thus for the purpose of analyzing LES, we are motivated to develop a model for the three-

point third-order correlation tensor. This will allow us to determine contributions of both

the non-linear terms and the sub-filter stress to energy dynamics.

B. The Fourier Transform of T

Proudman and Reid [15] determined a general form for the Fourier transform of T in both

r and s (this is a six-dimensional Fourier transform). For an incompressible, homogeneous,

isotropic turbulence, the most general possible form for the Fourier transform Φ of T is given

by

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆kp(σ)
[
δnpρmφ+ δmpσnφ1 + δmnρpφ2 + ρmσnρpζ

]
(16)

where the wavevectors ρ, σ and τ are interrelated ρ+σ+τ = 0, and ∆im(ρ) = δim−ρiρm/ρ
2

is the divergence-free projector. The scalar functions φ, φ1, φ2 and ζ depend only on the

magnitudes of the wavevectors. For an outline of the derivation of (16), see Appendix B.

Symmetries in the tensor T imply symmetries among scalar functions:

φ(ρ, σ, τ) = −φ(σ, ρ, τ) = φ1(τ, ρ, σ) = φ2(ρ, τ, σ) (17)

Proudman & Reid[15] also analyze the dynamic equation for Φ in the context of the

quasi-normal approximation to find independent (model) dynamic equations for φ and ζ.

These equations imply that for stationary turbulence, ζ is zero. We will thus assume that

ζ = 0, and with the symmetries expressed in (17), Φ is determined through (16) by a single

scalar function φ of ρ, σ and τ . We start with this form in developing our real-space model

for T.

III. INERTIAL-RANGE MODEL OF T

To construct a model for the three-point third-order correlation, a general tensor form

consistent with (16) is derived, and then the scalar function appearing in the expression is

selected for consistency with the Kolmogorov 4/5 law.
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A. A general form for T in real space

To develop the analog of (16) in real space, it will be inverse Fourier transformed to yield

an expression for T. However, to simplify the computations in real-space, it is convenient

to recast the expression as

Φijk(ρ,σ) = ∆̃im(τ )∆̃jn(ρ)∆̃kp(σ)
[
δnpiρmφ̃(ρ, σ, τ) + δmpiσnφ̃(σ, τ, ρ) + δmniρpφ̃(ρ, τ, σ)

]

(18)

where ∆̃im(ρ) = ρ2δim − ρiρm is a modified divergence free operator, and φ̃(ρ, σ, τ) =

−iφ(ρ, σ, τ)/(ρστ)2 is a modified scalar function that has the same symmetry properties

as φ. The advantage of this form is that the inverse Fourier transform will not give rise to

inverse Laplacian operators. An inverse Fourier transform of (18) yields

Tijk(r, s) = P t
imPs

jnPr
kp[δnp∂

s
mψ(r, s, t) + δmp∂

r
nψ(t, r, s) + δmn∂

s
pψ(t, s, r)] (19)

which is thus our general expression for T in stationary, homogeneous, isotropic incompress-

ible turbulence. Here, the third separation vector is t = r − s, the scalar function ψ(r, s, t)

is the inverse Fourier transform of φ̃, and r, s and t are the magnitudes of the separation

vectors r, s and t respectively. The operators appearing in (19) are defined:

∂r
i ≡ ∂

∂si

∣∣∣∣
r

(20)

∂s
i ≡ ∂

∂ri

∣∣∣∣
s

(21)

∂t
i ≡ − ∂

∂ri

∣∣∣∣
s

− ∂

∂si

∣∣∣∣
r

(22)

Pα
ij ≡ δij∂

α
k ∂

α
k − ∂α

i ∂
α
j (23)

It is straight-forward to confirm that the expression for T in (19) satisfies the relevant

symmetry and continuity constraints for the third-order three-point correlation, provided

that

ψ(r, s, t) = −ψ(s, r, t), (24)
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which is the analogue of (17). The constraints on T are:

∂t
iTijk = ∂s

j Tijk = ∂r
kTijk = 0 (25)

Tijk(r, s) = Tikj(s, r) (26)

Tijk(r, s) = Tjki(−t,−r) (27)

Tijk(r, s) = Tkij(−s, t) (28)

The tensor form given in (19) is clearly linear in ψ, indeed it can be expressed as:

Tijk = Lijk(ψ) (29)

where Lijk is the tensor-valued linear operator implied by (19). To complete the model of

the three-point third-order correlation, we need only specify ψ(r, s, t) satisfying (24).

B. Scalar function ψ in the inertial range

Our primary interest is a model for T that is valid in the inertial range, analogous to the

inertial range expression for S (3). Kolmogorov’s 4/5 law constrains S to vary linearly with

separation. Since T must reduce to S when r, s or t are zero, this linearity must be reflected

in T as well. More generally, the Kolmogorov similarity argument[1, 11] requires that in the

inertial range

T(αr, αs) = αT(r, s) (30)

The simplest way to ensure this linearity is to choose ψ(r, s, t) to be a polynomial in r, s

and t. Since each term in (19) is a seventh derivative of ψ, only terms with total degree of

8, will contribute to the linear scaling of T. This, along with the symmetry constraint on ψ

(24) suggests that ψ be constructed from terms of the form

pa,b ≡ (rasb − rbsa)tc (31)

with a+ b+ c = 8 and a, b, c ≥ 0. There are only 20 expressions of this form, and of these

14 produce non-zero T when substituting for ψ in (19).

However, all of these 14 non-trivial T are singular when r, s or t are zero. For example,

terms such as: rirjrkr/s
3 arise, which is clearly singular at s = 0. In addition, terms like

δijskr/s arise, which is discontinuous at s = 0. It was found, however, that there is a 5-

dimensional null space of the singular and discontinuous terms. There is thus a 5-dimensional
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space of possible ψ functions that yield non-singular, continuous T. The space is spanned

by the following 5 functions:

ψ1 =
1

5760
[−27p0,3 − 3p0,5 + 4p2,3 + 18p3,5] (32)

ψ2 =
1

1155840
[−315p0,3 + 4p0,7 + 56p2,5 − 140p3,4 + 1260p3,5] (33)

ψ3 =
1

1257600
[−4p0,1 − 1935p0,3 − 40p1,2 + 80p1,3 − 60p1,4

+16p1,5 + 180p2,3 + 990p3,5] (34)

ψ4 =
1

462720
[−4p0,1 − 1215p0,3 − 36p1,2 + 64p1,3 − 36p1,4

+4p1,6 + 108p2,3 − 20p2,5 + 40p3,4 + 270p3,5] (35)

ψ5 =
1

10684800
[−60p0,1 − 16065p0,3 − 504p1,2 + 840p1,3 − 420p1,4

+24p1,7 + 1260p2,3 + 7560p3,5] (36)

Where pi,j are as defined in (31) above. These functions have been normalized so that each

of the Tn = L(ψn) satisfies

Tn
ijk(0, r) =

1

15

(
δijrk −

3

2
(δikrj + δjkri)

)
(37)

which is just (3) with ǫ set to 1. The analytic model we seek for T is thus given by:

Tijk(r, s) =
5∑

n=1

anTn
ijk(r, s) with

5∑

n=1

an = ǫ (38)

While the scalar basis functions ψn are relatively simple to write down (32–36), the basis

tensors Tn are not. Indeed the expressions are so complex (as many as 758 terms), that

they will not be written out here. The process by which the calculations were performed

is described in Appendix C and programs are available at http://turbulence.ices.utexas.edu

to evaluate the tensor numerically.

To display the features of the five basis tensors defined above, we examine the various

components of the tensor for two special arrangements of the separation vectors. First is

with the separation vectors r and s colinear (parallel, designated by ‖), which, without loss

of generality, we choose to be in the x1 direction (r = re1, s = se1). In this case, there are

only seven non-zero components, of which only T
‖
111 and T

‖
122 are independent. The other 5

(T
‖
212, T

‖
221, T

‖
133, T

‖
313 and T

‖
331) are related to T

‖
122 through symmetry.

The second separation vector configuration is with r and s orthogonal (designated by ⊥).

Again, without loss of generality r = re1 is chosen to be in the x1-direction, and s = se2 is
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FIG. 1: Basis functions for the non-zero, non-redundant components of T‖/q and T⊥/q (see text

for definitions) as functions of θ = arctan(s/r). T1=(plain curve), T2=+, T3=×, T4=©, T5=�

chosen in the x2-direction. In this configuration, there are 14 nonzero components, of which

seven are independent: T⊥
111, T⊥

112, T⊥
121, T⊥

122, T⊥
133, T⊥

313, T⊥
323. Each of these is one of a pair

of symmetrically related components.

Since the tensor functions vary linearly with separation, the tensors can be normalized by

q ≡ max(r, s, t), which for the special separation configurations considered leaves only the

dependence on s/r. The non-zero, non-redundant components of T‖/q and T⊥/q are shown

in figure 1 as a function of θ = arctan(s/r). Note that the five basis tensors have similar

structure, and that two of them are quite similar (T3=× and T5=�). There has been no

effort to orthogonalize the basis.
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a1/ǫ 0.884

a2/ǫ -2.692

a3/ǫ -6.099

a4/ǫ -5.853

a5/ǫ 14.760

TABLE I: Values of the model coefficients in (38) found by fitting the DNS data of Langford &

Moser[12]

C. Fitting to DNS data

To determine the 5 coefficients {a1, a2, ..., a5} in (38), a least-squares fit to data from

a Direct Numerical Simulation (DNS) of forced isotropic turbulence at Reλ = 164 [12] is

performed. Let E(r, s) = TDNS − Tmodel, be the error tensor. Then the fitting was done to

minimize the objective function:

F =

(
1 − 2

π

) ∫
E

‖
ijk(r, s)E

‖
ijk(r, s) dr ds+

2

π

∫
E⊥

ijk(r, s)E
⊥
ijk(r, s) dr ds (39)

under the constraint that
∑

n an = ǫ, where only separation vectors r and s that are parallel

or perpendicular are considered, to reduce the data requirements to a manageable level, and

the integrals are taken over the domain in r and s for which q is in the approximate inertial

range for the DNS (q/λ ∈ [0.72, 1.2]) or (q/η ∈ [19, 32]). This objective was selected as a

(crude) approximation to the integral over all r and s in the inertial range. The coefficients

obtained from this fit are given in table I. The coefficient of determination is R2 = 0.96,

indicating that our model describes the DNS data quite well.

The ability of the model to represent the DNS correlations is shown in figure 2, in which

non-zero components of T/q are plotted as a function of θ, for the parallel and perpendicular

separation vectors, as in figure 1. The agreement between model and DNS is very good.

One exception is the discrepancy in T⊥
111. This may be a problem with the DNS data rather

than the model, because the DNS data was significantly unsymmetric which implies a lack

of statistical convergence in the DNS data for this component. Further indication of the

quality of the model is given in figure 3, where contour plots show the non-zero components

of T as functions of r and s in both the model and the DNS. Since there is a symmetry

in each term shown, the DNS and model are shown together in each frame, with a line
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FIG. 2: Basis functions for the non-zero, non-redundant components of T‖/q and T⊥/q (see text

for definitions) as functions of θ = arctan(s/r) from the DNS data of [12] (crosses) and the tensor

model given by (38) and table I (curve).

of symmetry dividing them. The model and DNS are very similar. But, there is a minor

discrepancy for r and s near zero, which is due to viscous effects not represented in the

model.

IV. DISCUSSION AND IMPLICATIONS

It is remarkable that the simple considerations of isotropy and the Kolmogorov similarity

assumptions are sufficient to exactly determine the two-point third-order correlation S, a

third-ranked tensor. The three-point third-order correlation T is a much more complicated
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FIG. 3: Contours of the DNS data of [12] and tensor model given by (38) and table I for T‖ and

T⊥ (see text for definitions) in the r–s plane. Each component has a symmetry, which is used to

allow the data and the model to be displayed side-by-side, as shown. The heavy black lines are

lines of symmetry for each component.
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object, so it is equally remarkable that the same considerations, along with a plausible

modeling ansatz regarding functional forms (31), is sufficient to specify a model for T in the

inertial range with just four free constants. The model appears to fit low Reynolds number

DNS data quite well. It would also be useful to test the model against higher Reynolds

number DNS data.

While the considerations leading to the model are simple, the model itself is algebraically

very complex. A special-purpose tensor algebra program was written to perform the neces-

sary manipulations. The detailed results are available at (http://turbulence.ices.utexas.edu),

as are programs used to evaluate the tensors numerically. Given the complexity of the expres-

sions, it may be that the ability to evaluate tensor components numerically will be most

useful.

The three-point third-order correlation T is of particular interest in the analysis and

modeling of LES, because by applying the LES filter to T one can determine third-order

correlations of the filtered velocity. This is important in analyzing the transfer of energy

among scales, and in formulating LES models. For example, the representation of T will

allow optimal LES models [12] of the type evaluated by Zandonade et al[13] to be formu-

lated theoretically, the usefulness of such a model will have to be evaluated a posteriori by

validation of simulations performed with the model.

As another example of the utility of the correlation in analyzing the impact of filtering, T

was used to evaluate the third-order longitudinal structure function of the filtered velocity

by using (13) to evaluate S̃3(r) = 6S̃111(re1) for a Gaussian filter kernel given by

G(x) =
1

∆
√

2π
e−|x|2/2∆2

, (40)

where ∆ is the filter width. The result is plotted in figure 4 along with S3 given by the 4/5

law. This filter is isotropic so it preserves the isotropy of the filtered field, implying that S̃ijk

is written in terms of S̃3 in the same way that Sijk is determined from S3 (see Appendix A).

Furthermore, the filter is homogeneous, and ∂Sijk/∂rj is a constant in the inertial range, so

(15) gives

∂Ŝijk

∂rj

=
∂Siji

∂rj

= − ǫ

3
δik (41)

Therefore, Q (14) is directly determined from the difference between S3 and S̃3 shown in

figure 4. In particular, using (A3) we can write the energy fluxes ∂S̃iji/∂rj = F (S̃3) and
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FIG. 4: Third-order longitudinal structure function S̃3 of a Gaussian filtered infinite Reynolds

number isotropic turbulence computed from the tensor model described by equation (38) and

table I. Also shown is the unfiltered structure function S3 from the Kolmogorov 4/5 law.

∂Q̃iji/∂rj = F (S̃3 − S3), where the operator F is given by

F (S(r)) =
2

3r
S +

7

12

dS

dr
+

r

12

d2S

dr2
. (42)

These two energy fluxes are also shown in figure 5. It is interesting that the flux to the sub-

filter scales goes to zero so slowly with increasing r, only reaching 10% of the dissipation by

r = 15∆. Further, because S̃3 − S3 goes to a constant for large r, the sub-filter flux only

goes to zero like 1/r.
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APPENDIX A: DETERMINATION OF S IN THE INERTIAL RANGE

The derivation of (3) starts from the general form of an isotropic third-rank tensor func-

tion of a vector argument

Sijk(r) = 〈ui(x)uj(x)uk(x + r)〉 = a rirjrk + b δjkri + c δikrj + d δijrk (A1)

where the scalars a, b, c and d are functions of the magnitude of the separation vector

r = ‖r‖ only. Symmetry in i and j requires that b = c. Further, the continuity constraint

∂Sijk/∂rk = 0 allows the functions a, b and d to be eliminated in terms of the third-order

longitudinal correlation function:

f(r) = 〈v2
‖(x)v‖(x + r)〉, (A2)

where v‖ is the velocity component parallel to the separation vector r. The result is

Sijk(r) =

{
1

2

(
f − r

df

dr

)
rirjrk

r3
+

1

4r2
(δjkri + δikrj)

d

dr

(
r2 f

)
− f

2r
δijrk

}
. (A3)

The third-order longitudinal correlation function is directly related to the third-order struc-

ture function, which in the Kolmogorov inertial range is S3(r) = −4
5
ǫr. The correlation f(r)
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can thus be written

f(r) =
S3(r)

6
= −2ǫr

15
(A4)

Substituting into (A3) then immediately yields (3).

APPENDIX B: THE MOST GENERAL FORM FOR Φ

Presented here is a condensed version of the derivation from Proudman and Reid [15].

The three-point third-order velocity correlation is Tijk(r, s) ≡ 〈vi(x)vj(x+ r)vk(x+ s)〉. It’s

Fourier transform is

Φijk(ρ,σ) = i(2π)−6

∫ ∫
Tijk(r, s)e

−i(ρ·r+σ·s) dr ds (B1)

Consistency with continuity requires:

(ρi + σi)Φijk(ρ,σ) = ρjΦijk(ρ,σ) = σkΦijk(ρ,σ) = 0 (B2)

While the most general isotropic third-ranked tensor function of two vectors is:

φmnp(ρ,σ) = φ1ρmρnρp + φ2ρmρnσp + φ3ρmσnρp + φ4σmρnρp

+φ5σmσnσp + φ6σmσnρp + φ7σmρnσp + φ8ρmσnσp

+φ9ρmδnp + φ10ρnδmp + φ11ρpδmn + φ12σmδnp + φ13σnδmp + φ14σpδmn(B3)

where {φ1, φ2, ..., φ14} are scalar functions of the magnitudes of the wavevectors ρ ≡ |ρ|,
σ ≡ |σ|, and τ ≡ |τ |, and ρ + σ + τ = 0.

To enforce incompressibility, we employ the divergence-free projector ∆im(ρ) ≡ δim −
ρiρm/ρ

2. So, to satisfy all three incompressibility conditions in equation (B2) and isotropy,

we apply three projectors to φmnp, the result is the most general form for Φijk.

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆kp(σ)φmnp(ρ,σ) (B4)

Furthermore, the triple projection operator directly eliminates all but 4 components of φmnp

shown in equation (B3), so effectively the above equation becomes

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆pk(σ)
[
φ3ρmσnρp + φ9ρmδnp + φ11ρpδmn + φ13σnδmp

]
(B5)

Renaming the scalar functions as follows: φ3 → ζ, φ9 → φ, φ11 → φ2, φ13 → φ1, we obtain

(16).
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APPENDIX C: CALCULATION PROCEDURES

Symbolic calculation of the tensor basis functions Tn were carried out using a col-

lection of scripts written in Matlab. These scripts operate on mathematical expres-

sions in the form of strings of characters, such as -36*DELTA ik*r^6*s^-3*s j*t^-3 +

432*r^-1*r j*r k*s i*t^-1 which is just a small part of T1. Scripts perform addition,

multiplication, and spatial differentiation (gradient or divergence). Addition and multipli-

cation of terms is straightforward. Derivatives with respect to the separation vectors of

scalars (e.g. r5) and vectors (e.g. r) must be computed. The following simple rules for the

evaluation of the derivatives ∂r
i

∂r
i s

α =
∂sα

∂si

∣∣∣∣
r

= αsα−2si (C1)

∂r
i t

α =
∂tα

∂si

∣∣∣∣
r

= −αtα−2ti (C2)

∂r
i sj =

∂sj

∂si

∣∣∣∣
r

= δij (C3)

∂r
i tj =

∂tj
∂si

∣∣∣∣
r

= −δij, (C4)

are implemented in the symbolic manipulation scripts, along with analogous rules for ∂s
i and

∂t
i . These along with the chain rule are sufficient to evaluate (19). Finally, the scripts also

simplify contractions; for example: δijri = rj, rjsj = r · s, and sjsj = s2.

Using the symbolic evaluator described above, (19) was evaluated for 20 different ψ given

by ψ = pa,b ≡ (rasb − rbsa)tc, where a + b + c = 8 and a, b, c ≥ 0 are integers. Of these 20

candidate tensor expressions, 14 are non-zero. However, all 14 have discontinuities and/or

singularities (which are non-physical) at r, s, or t of zero.

To eliminate the discontinuities and singularities, linear combinations of the 14 non-trivial

basis functions are sought which exactly cancel them. This is done by using the first order

approximation of t for small s, namely t ≈ r and simplifying the resulting expressions for

each basis function. Singular and discontinuous terms (for small s) are identified as those

with net power of s that is less than or equal to zero, and that are not independent of s.

Thus, terms with factors such as sk/s or sisjsk/s
3 are identified as discontinuous at s = 0

(their limiting values as s→ 0 depend on the direction of the approach), while factors such

as sk/s
3 and 1/s are simply singular at s = 0. Each of the 14 reduced basis tensors includes

one or more of 28 distinct discontinuous or singular terms. The null space of the 28 × 14
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matrix of coefficients of the singular and discontinuous terms defines the space of tensor

function in which all these terms cancel. Remarkably, it was found that the dimension of

this null space is 6 (rather than zero). A vector basis for the null space then defines a basis

of tensor functions in which the problematic terms have been eliminated.

However, this does not necessarily lead to a basis in which there are no singularities

or discontinuities. The reason is that the approximation for t was only first order in s,

and higher order terms can also lead to singularities or discontinuities. Indeed, it was

observed that 4 of the 6 basis tensors determined above were discontinuous. By substituting

t = r − s, and expanding to explicitly expose the higher-order terms in s, the remaining

singular/discontinuous terms were identified. Using the same procedure described above, it

was found that these singularities and discontinuities had a five-dimensional null-space. A

basis for the five-dimensional space of continuous nonsingular model tensors is thus found

and is given in equations (32–36).
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